Influence of Agricultural Extension Services on Food Production among Rural Farmers in Cross River State

¹Anam, Bassey E., ²Uzoh, Esther E. ³Unimke, Sylvester A., ¹Etim, Victor N., ⁴Eburikure, Olayi J. ¹Ekpo, Effiom E., ⁵Dede, Chinyere H. ³Undie, Joseph B. ¹Akpan, Augustine O.

¹Institute of Public Policy & Administration, ²Department of Social Work, ³Department of Social Science Education, ⁴Department of Special Education, ⁴Department of Public Administration, ³Department of Social Science Education, University of Calabar, Calabar

Corresponding Author: basseyanam@edu.unical.ng

Abstract

This study focused on influence of agricultural extension services on food production among rural households in Cross River State (CRS), Nigeria. Specifically, it determined ways: training and supervision services influence food production among rural farmers, in Cross River State. Two null hypotheses were tested at 0.05 level of significance. Survey design was employed. Population comprised 550 respondents (500 farmers and 50 extension agents). Data were gathered using questionnaire. Mean, standard deviation, and t-test were used for the data analysis. Results reveal 15 ways agricultural extension training services improved food production among rural farmers in CRS, ($\overline{X} \ge 2.50$). These include, among others, increased livestock production (\overline{X}_g = 3.03) and adoption of early-maturing varieties $(\overline{X}_{g}$ = 3.13). Other results are 12 ways extension supervision improved food production, including; timely adoption of recommended practices ($\bar{X}_g = 3.29$), improved harvesting practices (\overline{X}_g = 3.07) and others. There were no significant differences between the mean scores of the farmers and the extension agents at 0.05 level of significances for all the items. Consequently, the two null HOs were accepted at this level. Five recommendations were made based on the findings.

Keywords: Agricultural extension, Food production, Rural farmers, Training, Supervision.

Introduction

Agriculture continues to be a central pillar of Nigeria's economy, sustaining the livelihoods of a vast rural population while contributing significantly to national food supply and poverty alleviation (Ujah & Ibe, 2025). However, despite its importance, the sector

struggles with low productivity, widespread food insecurity, increasing vulnerability to climate-driven Agriculture shocks (Food and Organization [FAO], 2024). A vital mechanism for enhancing agricultural outcomes is the provision of robust agricultural extension services, which

deliver technical guidance, innovation transfer, and capacity-building to farmers, enabling the adoption of improved practices, enhanced inputs, and sustainable farming methods (National Agricultural Extension Research Liaison Services [NAERLS], 2023; Rivera & Sulaiman, 2009).

Extension operates as a system that links farmers, research and development and markets, enabling institutions, farmers to access knowledge, improved crop varieties, climate-smart practices, pest management strategies, post-harvest technologies, and market information (Swanson & Rajalahti, 2010; Anderson & Feder, 2007). In principle, extension should facilitate translation the agricultural research into scalable improvements at the farm level, thereby contributing to improved food production, rural incomes, and food security (Yohannes & Berhanu, 2022).

In Nigeria, however, the delivery of extension services remains severely constrained. While FAO recommends an extension agent-to-farmer ratio approximately 1:400 to 1:1,000 for effective coverage, recent reports indicate that many states operate at ratios of 1: 5,000 to 1: 10,000 (Guardian Nigeria, 2024; AgroCentric, 2025). Inadequate funding, shortage of skilled personnel, weak supervision mechanisms, poor infrastructure, and limited outreach capacity have undermined the reach and of effectiveness extension services (NAERLS, 2023; Olawuyi & Ogunlade, 2022). As a result, millions of smallholder farmers remain unreached, unable to

benefit from modern agricultural technologies and practices, contributing to persistently low agricultural productivity and food insecurity across rural Nigeria (*BusinessDay*, 2024).

The situation in Cross River State exemplifies the challenges of inadequate training and supervision of farmers, and this affects their productivity (CRS-ADP, 2024). Despite interventions by the Cross River State Agricultural Development Programme (CRS-ADP), in collaboration with the Ministry of Agriculture and development partners, many households remain dependent agriculture, with traditional, rain-fed improved seeds, access to mechanisation, credit, storage facilities, or extension support (Federal Ministry of Agriculture and Rural Development & TASAI, 2020; FAO, 2024). Programmes targeting cassava transformation, rice and value-chains, maize soil fertility management, and mechanisation have been implemented, but adoption remains uneven, especially among remote and marginalised communities (CRS-ADP, 2024).

It is necessary to investigate issues relating to agricultural extension training and services and rural farmers in the area including ways these services influence food production. Training refers structured programmes aimed equipping farmers with skills in crop management, climate-smart agriculture, pest control, value addition, and market access delivered through demonstrations, farmer field schools, workshops, and advisory services (FAO,

2024: Rivera Sulaiman, 2009). & Supervision involves continuous follow-up and technical support by extension ensuring agents, correct application of training content, monitoring progress, providing feedback, offering farm-specific technical solutions (Yohannes & Berhanu, 2022). Food production represents the output of agricultural activities, including yields, livestock output, crop diversification, and post-harvest handling, which ultimately influences household nutrition, income, and food security (Chikaire, et al 2015, World Bank, 2025). A study on the influence of extension training and supervision on food production among rural households, is expected to provide evidence-based insights inform improved extension delivery, policy reforms, and agricultural development strategies.

Purpose of the study

This study focused on agricultural extension services and food production among rural households in Cross River State, Nigeria. Specifically, it determined ways food production is influenced by the following agricultural extension services among rural households in Cross River State:

- 1. training services
- 2. supervision services

Hypotheses

The following HOs were tested at 0.05 level of significance:

There are no significant differences between the mean responses of farmers and agricultural extension agents on ways food production is influenced by the following agricultural extension services among rural households in Cross River State:

HO₁: training services HO₂: supervision services

Methodology

Research Design: The study adopts a survey research design.

Area of Study: This study was conducted in the Southern Senatorial District of Cross River State, Nigeria. This is an agriculturally vibrant region comprising seven local government areas. The zone lies within the tropical rainforest belt, favourable climatic conditions, with abundant rainfall, fertile soils, and dense vegetation, supporting year-round farming. Agriculture is the primary livelihood in the area, with most residents engaged in smallholder farming.

Population of Study: The population of this study consisted of 550 individuals, made up of two distinct groups: 500 farmers registered rural and agricultural extension service agents across the seven Local Government Areas (LGAs) of Southern Senatorial District of Cross River State (Cross River State Agricultural Development Programme {CRS-ADP}, farmer cooperatives, and local agricultural registers as of 2023 {CRS-ADP Records, 2023}). The farmers also varied in terms of age, educational background, and farm sizes, reflecting the demographic and socioeconomic diversity of rural agricultural households in the state. The agents were distributed across

the seven LGAs according to their operational zones. They were responsible for delivering training, advisory, and supervisory services to farming communities.

Sample of the Study: The sample of the study was 150 respondents, consisting of 135 rural farmers and 15 agricultural extension agents. The total sample size was determined using Yamane's formula (1967). Only those farmers who had benefited from extension training and supervision services within the past five years were purposively selected. A total of 15 agricultral extension agents were also purposively selected from 50 CRS-ADP staff across the LGAs. Only those agents who were directly involved in farmer training and supervision services and who had at least three years of field experience were selected.

Instrument for Data Collection: The instrument for data collection was a questionnaire. structured developed based on study objectives review of relevant literature. It contained 28 items that covered the specific objectives of the study. The instrument had a five-point scale ranging from 1 (Strongly Disagree) to 5 (Strongly Agree). The questionnaire was validated by three university experts agricultural in extension and rural development. Reliability of the instrument established based on data collected through pilot study 30 respondents from outside the area of the study and use of Cronbach's Alpha technique on coefficient of 0.87 obtained using showing high internal consistency of the instrument for the main study.

Data Collection Technique: A total of 150 copies of questionnaires were distributed by hand to the two groups of respondents: rural farmers (135 copies) and agricultural extension agents (15 copies). Four trained research assistants were involved. The entire 150 copies of questionnaires were retrieved. This was a 100 percent return.

Method of Data Analysis: Mean and standard deviation, were used for data analysis. Based on the five-point scale on the instrument, a benchmark mean score of 2.50 was set for decision-making. A mean score of ≥ 2.50 or above was interpreted as "Agreed," while a mean score below ≤ 2.50 was considered "Disagreed." Grand means were computed for each item to determine the overall perception across both groups. t-test was used to test the hypotheses at 0.05 level of significance.

Results

Table 1: Mean Responses, Standard Deviation and t-test Results on Ways Agricultural Extension Training Programmes Improved Food Production among Rural Farmers in CRS

among Kurai Farmers in CK5										
S/N	Influence of Training	$\overline{\mathbf{X}}_{1}$	SD_1	$\overline{\mathbf{X}}_{2}$	SD_2	$\overline{\mathbf{X}}_{\mathbf{g}}$	t	P	D	
1	Increased crop yields per hectare	2.66	1.18	2.83	1.25	2.75	-0.5024	0.6161	148	
2	Increased livestock production	3.06	1.17	3.00	1.30	3.03	0.1712	0.8643	148	
3	Expansion of cultivated farmland	2.87	1.12	3.00	1.08	2.94	-0.4406	0.6601	148	
4	Enhanced access to inputs and technologies	2.98	1.01	2.96	1.12	2.97	0.0662	0.9473	148	
5	Reduction in post-harvest losses	2.65	1.08	2.92	1.19	2.89	-0.2181	0.8277	148	
6	Year-round farming through irrigation	3.01	1.14	3.10	1.07	3.06	-0.3070	0.7593	148	
7	Diversification of food crops grown	3.10	1.12	3.21	1.16	3.16	-0.3496	0.7271	148	
8	Higher seed germination and crop survival rates	2.85	1.13	2.88	1.10	2.87	-0.0999	0.9206	148	
9	Increased use of organic & inorganic fertilisers	2.80	0.96	2.86	1.02	2.83	-0.2174	0.8282	148	
10	Adoption of early-maturing varieties	3.15	0.95	3.10	1.04	3.13	0.1781	0.8589	148	
11	Integration of agroforestry & crop-livestock systems	2.93	0.91	2.98	0.98	2.96	-0.1888	0.8505	148	
12	preservation methods	2.90	1.05	2.95	1.12	2.93	-0.1650	0.8692	148	
13	Better market access & income generation	3.08	1.09	3.12	1.15	3.10	-0.1285	0.8979	148	
14	Chillate-Shiart farming	2.96	1.07	3.01	1.14	2.99	-0.1621	0.8714	148	
15	Strengthened farmer cooperative activities	2.91	1.02	2.97	1.08	2.94	-0.2052	0.8377	148	

 \bar{X}_1 = Mean of Farmers (150); SD_1 = Standard Deviation of Farmers; \bar{X}_2 = Mean of Agricultural Extension Agent (15); SD_2 = Standard Deviation of Agricultural Extension Agents; \bar{X}_g = Grand Mean; t = t-test result; P = P-value results; Degree of Freedom (148)

Table 1 shows that all 15 items, both groups of respondent obtained mean scores greater than 2.50 ($\overline{X} \ge 2.50$), indicating 15 ways agricultural extension training services contribute positively to food production in the area of the study. The grand means (\overline{X}_g) for all items were also above the benchmark ($\overline{X} \le 2.50$).

The Table also shows that there are no significant differences between the mean scores of the farmers and extension agents for each of the 15 ways at 0.05 level of significance. Consequently, the null hypothesis was uphelp for each cash item at the 0.05 level of significance.

Table 2: Mean Responses and Standard Deviation and t-test values ways Agricultural Extension Supervision Service Improve Food Production

among Rural Farmers in Cross River State

among Kurai Farmers in Cross River State										
S/	Influence of Training	$\overline{\mathbf{X}}_{1}$	SD_1	$\overline{\mathbf{X}}_{2}$	SD_2	$\overline{\mathbf{X}}_{\mathbf{g}}$	t	P	D	
N										
1	Timely adoption of recommended practices	3.24	1.00	3.33	0.91	3.29	- 0.254	0.800	148	
2	Correct application of fertilisers and chemicals	2.69	1.18	2.80	1.03	2.75	- 0.364	0.716	148	
3	Higher germination and crop establishment rates	3.48	0.87	3.60	0.73	3.54	- 0.748	0.455	148	
4	Early detection and control of pests/diseases	3.20	0.94	3.28	0.85	3.24	- 0.383	0.703	148	
5	Improved harvesting practices	3.03	0.98	3.10	0.90	3.07	- 0.281	0.779	148	
6	Efficient use of farm inputs	2.91	1.12	3.00	1.05	2.96	- 0.274	0.785	148	
7	Consistent farm record- keeping	3.13	0.90	3.20	0.86	3.17	- 0.354	0.724	148	
8	Use of improved planting materials	2.92	1.19	3.00	1.11	2.96	- 0.229	0.819	148	
9	Introduction of better crop varieties based on farm conditions	3.10	1.05	3.20	1.01	3.15	- 0.379	0.707	148	
10	Improved soil and water management	2.87	1.12	2.95	1.02	2.91	- 0.306	0.760	148	
11	Identification and scaling of best practices	2.66	1.22	2.75	1.14	2.71	- 0.312	0.755	148	
12	Improved motivation and confidence of farmers	2.95	1.10	3.00	1.04	2.98	- 0.148	0.882	148	

 \bar{X}_1 = Mean of Farmers (150); SD_1 = Standard Deviation of Farmers; \bar{X}_2 = Mean of Agricultural Extension Agent (15); SD_2 = Standard Deviation of Agricultural Extension Agents; \bar{X}_g = Grand Mean; t = t-test result; P = P-value results; Degree of Freedom (148)

Table 2 shows that all the 12 items recorded mean scores above the benchmark ($\overline{X} \ge 2.50$), indicating that both rural farmers and extension agents generally agree that these are 12 ways agricultural extension supervision service influence food production. The grand means (\overline{X}_g) for all the 12 items also exceeded 2.50. The Table also shows that there are no significant differences between the mean reponses of the farmers and the extension agents for each of the 12

ways agricultural extension supervision services improve food production at 0.05 level of significance. Consequently, the null hypothesis was upheld at 0.05 level of significance.

Discussion

The findings of this study demonstrate that agricultural extension services play a pivotal role in enhancing food production among rural farmers in Cross River State. Table 1, with a grand mean of 2.97,

agricultural indicates that training programmes exert a substantial positive influence on various aspects of farm productivity. Specifically, training programmes were perceived to improve crop yields, increase livestock production, promote the adoption of early-maturing crop varieties, reduce post-harvest losses, and enhance farmers' access to inputs and technologies. These findings align with studies indicating previous that structured training interventions improve farmers' knowledge, promote the agricultural adoption modern of technologies, increase farm and productivity when effectively implemented (Adewale & Aremu, 2020; Nnadi et al., 2021; Yusuf & Okon, 2023; World Bank, 2023; Okeke & Musa, 2024). The t-test analysis further revealed no significant differences between farmers' extension agents' perceptions, suggesting a shared consensus on the effectiveness of training programmes and highlighting the importance consistency in extension messaging and outreach.

Table 2, with a grand mean of 3.08, reinforces the critical role of supervision by extension agents in enhancing food production. Supervision was found to facilitate the timely adoption recommended practices, correct application of fertilisers and other inputs, crop germination establishment rates, and improved farm record-keeping. These results corroborate evidence that continuous follow-up, guidance, monitoring technical and strengthen the effectiveness of extension services, improve farmers' decision-making, and reduce the risk of poor farm management (Caroline et al., 2020; Olawuyi & Ogunlade, 2022; FAO, 2022; Okeke & Musa, 2024). The alignment of farmers' and agents' perceptions, as indicated by non-significant t-test results (p > 0.05), underscores that supervision is widely recognised as a critical component of extension service delivery.

The findings from Tables 1 and 2 demonstrate collectively that wellcoordinated training programmes, effective supervision, and integration of modern advisory technologies essential for improving food production, enhancing farmers' technical capacity, and promoting rural food security in Cross River State. These results highlight the need for policy interventions that expand extension coverage, strengthen supervision systems, and continuous capacity-building for both extension agents and farmers, in line with the recommendations of FAO (2022) and World Bank (2023). Additionally, the study confirms that the combination of training and supervision contributes not only to higher productivity but also to increased confidence among farmers in adopting modern agricultural practices, thereby fostering sustainable rural development.

Conclusion

The study examined ways agricultural extension training and supervision services, influence food production among rural farmers in the Southern Senatorial District of Cross River State.

The findings reveal that training services play a critical role in enhancing farmers' technical knowledge, practical skills, and overall farming competence. Through structured trainings, farmers gained better understanding of modern techniques, improved production agronomic practices, and efficient resource management strategies, all of which contributed to higher yields and productivity. Supervisory improved services further strengthened these gains by providing follow-up guidance that ensured farmers correctly applied newly acquired skills in their fields. Regular timely supervision also encouraged adoption of innovations, adherence to recommended practices, and early correction of mistakes that could undermine production.

Recommendations

Based on the study findings, the following measures are suggested to improve agricultural extension services and strengthen food production in Cross River State:

- 1.Organise regular, practical sessions (e.g., Farmer Field Schools, demonstrations) on crop diversification, irrigation, and post-harvest handling.
- 2. Tailor content to farmers' specific challenges, such as soil management, pest control, and market access, while actively including women and youth.
- 3. Ensure regular farm visits using structured checklists, with continuous technical guidance for timely adoption of innovations.

- 4. Provide mobility tools, materials, and refresher training to enhance supervision efficiency and reach.
- 5.Develop monitoring and feedback systems that document farmers' challenges and link them to research institutions for responsive solutions.

References

- Adewale, O., & Aremu, A. (2020). The impact of agricultural extension training on farmers' productivity in Nigeria. *Journal of Agricultural Extension and Development*, 12(2), 45–57.
- Anderson, J. R., & Feder, G. (2007). Agricultural extension. In R. Evenson & P. Pingali (Eds.), *Handbook of Agricultural Economics* (Vol. 3, pp. 2343–2378). Elsevier. https:// doi.org/10.1016/S1574-0072(06)03044-1
- AgroCentric. (2025, April 29). The future of agricultural extension services in Nigeria. *AgroCentric*.
- BusinessDay. (2024). How ineffective agric extension service undermines Nigeria's food security. BusinessDay.
- Caroline, T., Mensah, S., & Kofi, B. (2020). Supervision and monitoring in agricultural extension: Enhancing farm productivity in sub-Saharan Africa. *African Journal of Agricultural Research*, 15(5), 234–245.
- Chikaire, J., Nnadi, F. N., Atoma, C. N., Egwuonwu, H. A., & Osuagwu, C. O. (2015). Effect of agricultural training programs on productivity of crop farmers in Nigeria. *International Journal of Agricultural Research and Review*, 3(2), 108–116.
- Cross River State Agricultural Development Programme (CRS-ADP). (2024). Annual report on agricultural interventions and rural development in Cross River State. CRS-ADP.

- Federal Ministry of Agriculture and Rural Development & TASAI. (2020). Nigeria country report 2020: Agricultural extension advisory services. https://ageconsearch.umn. edu/record/317016/files/Nigeria%20Cou
 - ntry%20Report%202020.pdf
- Food and Agriculture Organization of the United Nations (FAO). (2022). State of Food and Agriculture 2022: Agricultural extension and advisory services for sustainable food systems. https://www.fao.org/
- Food and Agriculture Organization of the United Nations (FAO). (2024). State of Food and Agriculture 2024: Agricultural extension and advisory services for sustainable food
- Guardian Nigeria. (2024, September 20). How dearth of extension workers worsens agric sector woes. The Guardian.
- National Agricultural Extension Research (2023).Services (NAERLS). Liaison Agricultural extension and advisory services in Nigeria: Status and challenges. NAERLS.
- Nnadi, F., Okafor, C., & Eze, P. (2021). Agricultural training and adoption of technologies among rural improved farmers in Nigeria. International Journal of Agricultural Development, 9(3), 78-92.
- Olawuyi, I., & Ogunlade, I. (2022). Constraints to agricultural extension services delivery in Nigeria. Journal of Rural Development Studies, 8(2), 45-62.
- Okeke, P., & Musa, S. (2024). The role of supervision enhancing extension in smallholder farm productivity in Nigeria. Nigerian Journal of Agricultural Economics, 14(1), 33-48.
- Okojie, J. (2020, March 25). Farm extension services remain weak link in Nigeria's

- value chain. BusinessDay. https://businessday.ng/agriculture/articl e/farm-extension-services-remain-weaklink-in-nigerias-agric-value-chain/
- Rivera, W. M., & Sulaiman, V. R. (2009). Extension: Object of reform, engine for innovation. Outlook on Agriculture, 38(3), 267-273. https://doi.org/ 10.5367/000000009789396810
- Swanson, B. E., & Rajalahti, R. (2010). Strengthening agricultural extension and advisory systems: Procedures for assessing, transforming, and evaluating extension sustems. World Bank Publications. https://doi.org/ 10.1596/ 978-0-8213-7581-
- Yamane, T. (1967). Statistics: An introductory analysis (2nd ed.). Harper & Row.
- Ujah, O., & Ibe, K. (2025). Nigeria's agricultural sector and the path to sustainable food security. Nigerian Journal of Agricultural Economics, 12(1), 1–18.
- World Bank. (2023). Nigeria agricultural productivity report 2023: Strengthening extension services for food security. World Group. https://www.worldbank.org/agriculture
- World Bank. (2025). Global food security report 2025. World Bank Group.
- Yohannes, H., & Berhanu, T. (2022). The role of agricultural extension services in promoting climate-smart agriculture in sub-Saharan Africa. Journal of Agricultural Development, 9(4), 122-138.
- Yusuf, T., & Okon, J. (2023). Farmers' agricultural extension perception of programmes and productivity in Cross River State, Nigeria. Journal of Agricultural Policy and Development, 11(2), 101–115.